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Fourier transforms of functions of several variables invariant under certain sym-
metry groups are studied, with particular reference to functionsf (x1 · · · xN) of N
three-component vectors invariant under rigid rotations. Here we use symmetry to
enhance the efficiency of evaluation of the integrals. The Fourier transform can
be written as an integralF(k)= ∫ dµ(x)K (k, x) f (x) over rotationally invariant
quantitiesx. The kernelK , the average of exp(i ok i · xi ) over the rotation group
SO(3), is reduced to a single integral,

∫ 1

0
J0(

1
2(Axx+Ayy)u)J0(

1
2(Axx−Ayy)(1−u))

exp(i Azz(2u−1)) du, a function of the eigenvalues of the dyadicA = oN
i=1k i xi . For

N = 1 the familiar Hankel transform is recovered. ForN = 2 the kernel reduces
to a single integral of elementary functions, equal to the local spin-flip propagator
in a one-dimensional tight-binding antiferromagnet. A variety of forms is given, and
useful asymptotic forms are found in various limits. Recent numerical methods for
the evaluation of irregular oscillatory integrals are applied to the kernel in theN = 2
case. c© 1998 Academic Press
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1. INTRODUCTION

The symmetry of the integrand in multivariate Fourier transforms often allows reduc-
tion of the number of integrations, enhancing numerical efficiency. For example, thed-
dimensional Fourier transform of a spherically symmetric function inRd reduces to a
one-dimensional Hankel transform [1],

∫
ddx ei k·x f (x) =

∫ ∞
0

dx xd−1K (kx) f (x), (1)
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where the kernelK (kx) is the average ofei k·x over the unit hypersphere:

K (kx) =
∫

Sd−1
dÄeikx cosθ = (2π)d/2(kx)1−d/2Jd/2−1(kx). (2)

(We recognise this as the spherically symmetric term in the general solution of thed-
dimensional Helmholtz equation−∇2K (x) = k2K (x).) As the(d−1)-dimensional angular
integral is known in closed form, we are left with a single radial integral overx. This is the
process we wish to generalise; such generalisation does not seem to be well known in the
literature.

The Fourier transforms considered here are of functions ofN d-vectors,

F(tk) =
∫ N∏

i=1

ddxi e
i t6N

i=1k i ·xi f (x), (3)

where we writek ≡ {k i ∈ Rd, i = 1 . . . N} andx ≡ {xi ∈ Rd, i = 1 . . . N}; the factort
is introduced to aid later asymptotic analysis. Supposef (x) is invariant under a groupG,
which in the present work is the groupSO(d) of proper rigid rotations of the frame ofN
vectors{xi } in Rd. Thus we have

f ({gxi }) = f ({xi }) ∀g ∈ G (4)

and

F({gk i }) = F({k i }) ∀g ∈ G. (5)

Let us separatex (hence, alsok) into a set of “radial” or “shape” componentsx ∈ M(k ∈
M), invariant under rotations, and a set of “angular” componentsg∈G. The groupG is
[d(d− 1)/2]-dimensional; the shape spaceM = RNd/G can be parameterised in a variety
of ways [2]. We therefore wish to write the Fourier transform (3) as

F(k; t) =
∫

x∈M
dµ(x)K (k, x; t) f (x), (6)

where the kernel

K (k, x; t) =
∫

g∈G
dµ(g)eit6N

i=1k i ·gxi (7)

generalises the Hankel kernel (2), with the measuresdµ to be defined.
The integrals discussed here arose in an attempt to generalise the Wigner function of

a single spin [3] to two or more coupled spins. However, other applications spring to
mind, such as calculation of the momentum wave functionφ(p1, p2) in a 1S0 state of the
helium atom, given the real-space wave functionψ(x1, x2) in Hylleraas-type [4] coordinates
{|xi |, |xi − x j |}. Similar manipulations appear in the study of scattering of polarised light
from orientationally disordered uniaxial ellipsoidal particles [5].

The kernel cannot in general be expressed in closed form in terms of elementary functions
(or indeed any special functions known to the authors). Our aim is therefore to reduce it
into a numerically tractable form. In three dimensions (with an arbitrary numberN of
vectors) we reduce the triple integral (7) to a single integral (28) involving Bessel functions.
With N= 2 (as in the helium atom) the integral simplifies further to a single oscillatory
integral of elementary functions, given in Eqs. (33)–(34). Recent numerical methods for
irregular oscillatory integrals allow efficient evaluation of these forms.
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2. ANALYTICAL EVALUATION OF KERNEL

The general problem is to evaluate the integral (7). The exponent is linear in the rotation
matrix Rµν(g),

S(g) ≡
N∑

i=1

k i · (gxi ) =
d∑
µ=1

d∑
ν=1

RµνAνµ, (8)

where

Aνµ =
N∑

i=1

(k i )µ(xi )ν. (9)

(For N sufficiently large and suitably chosen vectors, any reald × d matrix A can be
expressed as a dyadic of this form.) We shall henceforth assume summation over repeated
Greek indicesµ, ν = 1 · · ·d (labelling components) and Roman indicesi, j = 1 · · · N
(labelling vectors).

There is some gauge freedom here [2]. We choose the initial relative orientation of thex
andk frames to maximiseS,

S+ ≡ max
g∈G

S(g) = S(e) = k i · xi = TrA, (10)

wheree is the identity element ofG. This defines a unique relative orientation almost every-
where in shape space; any degeneracies are of no relevance to the subsequent derivation.

2.1. N Vectors in Three Dimensions

Having formulated the general case, we now specialise tod = 3. The integration (7) is
then over the three-dimensional manifold ofSO(3). There are two well-known parameteri-
sations of this group: in terms of axis and angle of rotation, and in terms of the Euler angles.
The latter leads to a more useful form, but we give both for completeness.

We first parameterise the group by the anglesθ andφ (the axis of rotationn in spherical
polar coordinates), andψ , the angle of rotation about this axis, with 0≤ θ ≤π, 0≤φ <2π,
0≤ψ ≤π . The normalised invariant measure [6] is

dµ(g) = 1

4π2
sinθ dθ dφ(1− cosψ) dψ (11)

and the rotation matrix is

Rµν(θ, φ, ψ) = nµnν + (δµν − nµnν) cosψ − εµνξnξ sinψ. (12)

The condition (10) ford = 3 implies the “zero-torque” condition

k i × xi = 0, (13)

which ensures that the coefficient of sinψ in S(g) vanishes. The matrixA (9) is therefore
symmetric, its eigenvectors defining an orthogonal coordinate system. We shall order the
eigenvalues as

Azz≤ Ayy ≤ Axx. (14)
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We now proceed to compute the kernel. The exponent is given by

S(g) = w(n)+ (S+ − w(n)) cosψ, (15)

where

w(n) = nµnνAµν (16)

is a linear combination ofl = 2 spherical harmonics:

w(n) = Axx sin2 θ cos2 φ + Ayy sin2 θ sin2 φ + Azzcos2 θ

= Azz+
[

1

2
(Axx + Ayy− 2Azz)+ 1

2
(Axx − Ayy) cos 2φ

]
sin2 θ. (17)

The kernel (7) is

K (k, x; t) = 1

4π

∫ π

0
sinθ dθ

∫ 2π

0
dφκ(tw(n)), (18)

where the integrandκ(tw(n)) is

κ(tw) = 1

π
eitw

∫ π

0
eit (S+−w) cosψ(1− cosψ) dψ (19)

= eitw[ J0(t (S+ − w))− i J1(t (S+ − w))] (20)

= −i

t

∂

∂w
[eitw J0(t (S+ − w))]. (21)

We proceed by computing the density ofw,

ρ(W) = 1

4π

∫ π

0
sinθ dθ

∫ 2π

0
dφδ(W − w(n)), (22)

to reduce the kernel to a single integral overW. Integrating first overφ and then over cosθ ,
we obtain (in the nondegenerate caseAzz< Ayy< Axx)

ρ(W) =



0, W < Azz,

Kc

(√
(Axx−Ayy)(W−Azz)
(Ayy−Azz)(Axx−W)

)
π
√
(Ayy−Azz)(Axx−W)

, Azz< W < Ayy,

Kc

(√
(Ayy−Azz)(Axx−W)

(Axx−Ayy)(W−Azz)

)
π
√
(Axx−Ayy)(W−Azz)

, Ayy < W < Axx,

0, Axx < W,

(23)

whereKc is the complete elliptic integral of the first kind. This density has finite disconti-
nuities atW = Azz andW = Axx and a logarithmic singularity atW = Ayy. Similar results
for the density of other combinations of spherical harmonics have appeared elsewhere [5].
We obtain the kernel as

K =
∫ Axx

Azz

ρ(w)κ(tw) dw. (24)

This integral is not yet in a form convenient for numerical integration.
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We now obtain an equivalent result by integration over the Euler angles 0≤α≤ 2π,
0≤β ≤π, 0≤ γ ≤ 2π . The rotation matrix is [7]

R=



cosβ cosα cosγ cosβ sinα cosγ
− sinβ cosγ

− sinα sinγ + cosα sinγ

− cosβ cosα sinγ − cosβ sinα sinγ
sinβ sinγ

− sinα cosγ + cosα cosγ

sinβ cosα sinβ sinα cosβ


(25)

and the normalised invariant measure is [2]

dµ(g) = 1

8π2
d cosβ dα dγ. (26)

The kernel is therefore

K =
∫

g∈SO(3)
dµ(g)eit [(1/2)(Axx+Ayy)(1+cosβ) cos(α+γ )+(1/2)(Axx−Ayy)(−1+cosβ) cos(α−γ )+Azzcosβ] .

(27)
Changing variables toα ± γ andu = (1+ cosβ)/2 reduces the integral to

K =
∫ 1

0
J0(t (Axx + Ayy)u)J0(t (Axx − Ayy)(1− u))eit Azz(2u−1) du. (28)

Numerical tests confirm the equivalence of the integrals (24) and (28), although the latter
is easier to evaluate. Expanding this kernel in a power series int gives

K = 1 − 1

6

(
A2

xx + A2
yy+ A2

zz

)
t2− i

6
Axx AyyAzzt

3

+ 1

120

[
2
(

A2
xx + A2

yy+ A2
zz

)2− (A4
xx + A4

yy+ A4
zz

)]
t4+ O

(
t5
)
. (29)

The real part of the kernel is invariant under the cubic symmetry group; the imaginary part
changes sign under inversion.

2.2. Two Vectors in Three Dimensions

We now further specialise to the cased = 3, N = 2. Figure 1 illustrates the rigid rotation
of the pair (gx1, gx2) with respect to the pair (k1, k2), with g∈SO(3). The torque-free
condition (13) requires the four vectors (k1, k2, x1, x2) to be coplanar, and the choice of
axes (14) constrains them to lie in thexy plane. The angle betweenk1 andx1 is

γ = arctan

(
k2x2 sin(2− χ)

k1x1+ k2x2 cos(2− χ)
)
, (30)

where χ is the angle betweenx1 and x2 and2 the angle betweenk1 and k2 (with
0≤χ ≤π and 0≤ 2 ≤ π ). The eigenvalues ofA are thenAzz = 0, Ayy = 1

2(S+ − S−),
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FIG. 1. Geometry of integration ford = 3, N = 2.

Axx = 1
2(S+ + S−), where we define

S± =
√

k2
1x2

1 + k2
2x2

2 + 2k1k2x1x2 cos(2∓ χ) (31)

=
√

k2
1x2

1 + k2
2x2

2 + 2(k1 · k2)(x1 · x2)± 2(k1× k2) · (x1× x2).

The definition (31) ofS+ can easily be shown to agree with the earlier definition (10).
The integral (28) further simplifies in this case to a number of equivalent forms:

K (t S+, t S−) =
∫ 1

0
J0(t S+u)J0(t S−(1− u)) du (32)

= 2

π t

∫ S+

S−

sintz√(
S2+ − z2

)(
z2− S2−

) dz, (33)

= 2

π

∫ π/2

0

sint
√

S2− +
(
S2+ − S2−

)
sin2 p

t
√

S2− +
(
S2+ − S2−

)
sin2 p

dp (34)

=
∫ 1

0
J0

(
t (S+ + S−)

√
1− z2

2

)
J0

(
t (S+ − S−)

√
1− z2

2

)
dz (35)

=
∫ 1

0

[
J0

(
1

2
t
√

S2+ − S2−
√

1− z2

)]2

cos(t S−z) dz. (36)

(All but the first form, which comes from Eq. (28), were obtained by rotatingx1 around
x2, then rotatingx2 aroundk1, and finally integrating over the angle betweenx2 andk1.
The resulting integrals, functions ofk1x1, k2x2,2 andχ , are then simplified by noting that
they must depend only on the two variablesS− andS+ using various standard results [8].)
Numerical tests confirm that all these forms are indeed equivalent to each other and to the
result (24) forN= 2 (Azz= 0), although we have found no closed form expression in terms
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FIG. 2. Kernel ford = 3, N = 2 as function ofAxx andAyy with t = 1.

of known functions [8]. We note that these expressions arereal. For N > 2 the kernel is
not in general real, as rotations inSO(3) preserve the handedness of the frames. Figure 2
shows the form of the kernel forN= 2.

2.3. Tight-Binding Analogue

We briefly note a connection between the integral (33) and one-electron propagators in a
tight-binding system [9]. Consider a one-dimensional chain with nearest-neighbour hopping
matrix element12

√
S2+ − S2− =

√
Axx Ayy and a staggered magnetic fieldS− = Axx− Ayy:

H = − 1

2

√
S2+ − S2−

∑
i

↓∑
s=↑
(|is〉〈(i + 1)s| + |is〉〈(i − 1)s|)

− S−
∑

i

(−)i (|i ↑〉〈i ↑ | − |i ↓〉〈i ↓ |). (37)

There are two bands,−S+ ≤ E≤ − S− andS− ≤ E≤ S+, and the band structure is

E±(p) = ±
√

S2− +
(
S2+ − S2−

)
sin2 p. (38)

The local real-time propagator is defined asGss′(t) = −i2(t)〈0s|e−i Ht |0s′〉, the amplitude
for an electron of spins′ on site 0 at time 0 to propagate to a spins state on site 0 at time
t . The time average of the amplitude for an electron to remain on site 0, and the spin-flip
amplitude for anx-polarised electron, are both proportional to the kernel:

1

2t

∫ t

0
dt′(G↑↑(t ′)+ G↓↓(t ′)) = 1

2π

∫ π

−π
dp

sinE±(p)t
E±(p)t

= K (t S+, t S−) (39)
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and

G←→(t) = 2

π

∫ S+

S−

S− sinEt d E√(
S2+ − E2

)(
E2− S2−

) = S−t K (t S+, t S−). (40)

(Compare Eqs. (34) and (33), respectively.) This may suggest other means of calculation
of the kernel although the exact correspondence is not clear.

2.4. Asymptotic Analysis

To understand the form of these oscillatory integrals, we investigate the leading large
t behavior of the integrals (33). In the general case(t S+ − t S− À 1, t S− À 1), we use
integral (33) and expand about the end-points:

√(
S2+ − z2

)(
z2− S2−

) ≈


√(
S2+ − S2−

)
2S−ξ, ξ = S− + z,

or
√(

S2+ − S2−
)
2S+ξ, ξ = S+ − z.

(41)

We can approximate the kernel by a sum of Fresnel integrals to give

K = 2

π t
√

S2+ − S2−

(∫ ∞
0

sint (S− + ξ) dξ√
2S−ξ

+
∫ ∞

0

sint (S+ − ξ) dξ√
2S+ξ

)
+ o
(
t−3/2

)
=
√

2

π t3
(
S2+ − S2−

)(sin(t S− + π/4)√
S−

+ sin(t S+ − π/4)√
S+

)
+ o
(
t−3/2

)
, (42)

i.e. t−3/2 times the superposition of two oscillatory functions.
There are two degenerate cases, where the function isO(t−1) for large t . If the two k

vectors (or the twox vectors) are nearly parallel,t (S+ − S−) = 2t Ayy will be small). In
this case we find

K ∼ sints

ts
J0

(
t
(
S2
+ − S2

−
)

4s

)
−
(
S2
+ − S2

−
)

costs

4ts3
J1

(
t
(
S2
+ − S2

−
)

4s

)
, (43)

wheres=
√(

S2+ + S2−
)
/2. We recover thed = 3 Hankel kernel

K = sint S+
t S+

(44)

for S− = 0 (compare Eq. (2)). In the other degenerate case bothk1x1 = k2x2 and2+χ = π
are satisfied, givingS− = 0 (or Ayy = Axx). For smallS− we find

K = J0(t S−)

t
√

S2+ − S2−
+
√

2

π t3S3+
sin(t S+ − π/4)+ o

(
t−3/2

)
. (45)

Inspection of the form (35) shows that the kernel is everywhere positive forS− = 0. Figure 3
shows the asymptotic forms fort S+ ≤ 20. As expected, the generic form (42, thin line) is
accurate forS+ = 2S−, while the other forms (45) and (43) are better approximations for
small and largeS−, respectively.
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FIG. 3. Kernel ford = 3, N = 2 as function oft for S+ = 1 and three values ofS−. Bold line, numerical
evaluation of integral (36); thin line, general asymptotic form (42); dashed line, asymptotic form (45) for small
S−; dotted line, asymptotic form (43) forS− ≈ S+. For S− = 0.99S+ the error in the latter approximation is much
smaller than the thickness of the lines.

3. NUMERICAL STUDIES

We will concentrate here on theN = 2 kernel. The versions ofK in Eqs. (32)–(36) each
exhibit different numerical difficulties which also depend on the values of the parameters
involved. Conventional quadrature methods may be used on smooth integrands with rapid
convergence [10] and such methods are typified by the classical Gauss–Legendre method
and the method Clenshaw and Curtis [11]. These methods fail to deliver such rapidly
converging results in two major subcases which are the subjects of considerable literature.
These are the cases in which the integrand has singularities in the range of integration,
and when the integrand has a highly oscillatory part. This latter case is further subdivided
into regular oscillatory integrands typified by kernels of the form sinωx for largeω, and
irregular cases which have kernels such as sinωq(x). These cases are further extended if
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the oscillatory part is nontrigonometric such as a Bessel oscillation. All these cases arise in
computingK . High order methods for the irregular oscillatory problem have only recently
been set up [12].

Hence to return to computingK , consider first version (33). For this example the problem
lies in the end point singularities which, if ignored by the blind application of the open
Gauss–Legendre rule, will yield very slow convergence with around three figure accuracy
for around 2000 integration points for typical values of the parameters. The easiest technique
to employ here is to split the range of integration into two to yield two integrals each with
singularities at zero. An application of the polynomial transformations of Evans, Forbes,
and Hyslop [13] with a simple quadratic transformation will give 14 correct digits with just
a 16 point Clenshaw–Curtis rule. Hence, the integral splits into

K = K1+ K2, (46)

representing the lower and upper halves of the range of integration. Applying the singularity-
removing transformationsz = S− + ω2v2 andz = S+ − ω2v2, respectively, to each half-
range, whereω2 = (S+ − S−)/2, gives

K1 = 4ω

π t

∫ 1

0

sint (ω2v2+ S−)√
(ω2v2+ 2S−)

(
S2+ − (ω2v2+ S−)2

) dv (47)

and

K2 = 4ω

π t

∫ 1

0

sint (S+ − ω2v2)√
(2S+ − ω2v2)

(
(S+ − ω2v2)2− S2−

) dv. (48)

In the second case, the integral in (28) is an example of an irregularly oscillatory integrand,
and a powerful approach to this is the direct application of the method of Evans and Webster
[12]. The principle behind this method is to consider a rule of the form

∫ b

a
f (x)eiq(x)dx =

M∑
i=1

Ai f (xi )+ E, (49)

where

xi = b− a

2
cos

π i

M
+ b+ a

2
, (50)

and force this rule to be exact by settingE = 0 for the set of functions given byf j (x) =
p′j (x)+ i p j (x)q(x), wherepj (x) = Tj (x), j = 0, . . . ,M −1, is the most effective choice
for pj , Tj (x) being thej th Chebyshev polynomial. For such a choice, (49) yields a set of
2M linear algebraic equations for the real and imaginary part as the integral on the left-hand
side of (49) can be integrated exactly to givepj (x)eiq(x)|ba. Although the linear equations are
ill-conditioned, the resulting computed weights can be shown to yield accurate quadrature
rules to high accuracy as the residues of the defining linear equations are zero to machine
accuracy. As in the previous case 14 significant digits are generated in 16 integration points.

The integral (35) is not so easy in that it is a product of two Bessel functions. The method
of Evans and Webster has been extended to deal with kernels of the formJn(ωq(x)) but not
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TABLE 1

Numerical Values of the Kernel (see Fig. 3)

S−

t 0.01 0.5 0.99

0.5 0.97935894292357 0.97419724283520 0.95925546405373
1.0 0.91972228144312 0.89960076847233 0.84297045100255
5.0 0.14294005363476 −0.081086970535548 −0.19408619166121

10.0 0.10645420869444 −0.011174516638095 −0.050355842266123
15.0 0.07997198470926 0.035996484912053 0.04720017053884

with products of this type. The final case, namely equation (36), also exhibits a combination
of oscillatory terms, and again the above comments apply.

3.1. Numerical Results

Practical tests were carried out on the four versions of the integralK on a range of values
of the defining parameters. For the first set of tests the value ofS+ was fixed at 1.0, andS−
was allowed to take the values 0.01, 0.5, and 0.99, and the scaling factort the values 0.5,
1.0, 5.0, 10.0, and 15.0. This range allows conventional Clenshaw–Curtis quadrature to be
used, effectively taking no account of any of the oscillatory factors. This test establishes the
equivalence of the four versions of the integral. The form (33) was integrated in two parts
as in (47) and (48) to account for the singularity, but otherwise the integrals were performed
directly.

The values obtained at convergence are shown in Table 1 and the number of function
evaluations to achieve 14 figure accuracy for each of the methods is shown in Table 2, in
the order of integrals (33)–(36).

Hence for moderate values of the defining parameters all four methods take a modest
number of quadrature points, where we remember that two integrals are evaluated in the
case of Eq. (33) for each value. It is also beginning to appear that the cases (34)–(36) require
increasingly large point numbers ast increases and the integrands become more oscillatory.
The method will become progressively more untenable as the oscillatory factort increases.
In these regions the special oscillatory methods are used as illustrated in the next subsection
in which the asymptotic formulae are investigated.

TABLE 2

Number M of Function Evaluations Required to Obtain 14-Digit

Accuracy with Integrals (33)–(36)

S−

t 0.01 0.5 0.99

0.5 32, 16, 8, 8 16, 16, 8, 8 8, 8, 8, 8
1.0 32, 16, 8, 8 16, 16, 8, 8 8, 8, 8, 8
5.0 16, 32, 16, 16 8, 16, 16, 16 4, 16, 16, 16

10.0 16, 32, 32, 32 8, 32, 32, 32 4, 16, 32, 32
15.0 16, 32, 32, 32 8, 32, 32, 32 4, 16, 32, 32
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TABLE 3

Number M of Function Evaluations Required, Exact Value of the Kernel,

and Asymptotic Form for S− = 0.5, S+ = 1

t M for (34) M for (33) Quadrature value Value by (42)

10 32 16 −1.1174516638095(−2) −1.359508816(−2)
500 128 64 −3.573191319899(−5) −3.58733172(−5)

1000 128 64 −3.395355921834(−5) −3.3929922(−5)
5000 128 128 −1.81929623227(−6) −1.819600724(−6)

10000 128 128 −3.4645654920(−7) −3.46530191(−7)

The reverse appears to occur for version (33). For this integral the oscillatory factor is
tω2 as in Eqs. (47)–(48) and, hence, this factor increases for larget , but decreases asS+
approachesS− which happens in the right-hand column of Table 1. Hence, again in general,
the direct integration of the full integrand with the singularity suppressed is only viable for
nonlarget or for S+ close toS−.

3.2. Asymptotic Regions

It is of considerable interest to investigate how the asymptotic forms forK behave
numerically in the various asymptotic regions. The first region is fort large and comparison
may be made with the asymptotic result (42). It is clear that forms (35) and (36) will not
be satisfactory with increasingly oscillatory terms. However, cases (33) and (34) can be
evaluated for larget using the Evans and Webster algorithm, as long as the singularity in
(33) is suppressed as in (47) and (48). This method holds its accuracy as the oscillatory
factor increases for the same nonoscillatory part.

Table 3 shows these results witht taken as large as 104 for S+ = 1 andS− = 0.5. For these
values, the direct application of Clenshaw–Curtis to the full oscillatory integrand yields only
six correct figures for 256 integration points att = 1000, and none at all att = 10000.

A new effect arises for these values, as the attainable accuracy will be below machine
accuracy as the final values become smaller. This is a normal problem with oscillatory
integrals where the integrand involves values of say order unity and the integral is, say, of
order 10−n. Then inevitably the process must involve subtractive cancellation with the loss
of n digits. This effect can be observed in the evaluation of sinx itself for large arguments.
As these hight values will be used with other smallert results in the outer integrals, it is
only the absolute errors which will be relevant, and these are sufficiently small not to cause
a problem.

It is clear from Table 3 that full attainable accuracy is achieved using both versions,
again remembering that two integrals are involved in case (33). Note that in both cases the
increasing parametert is not just an oscillatory factor but also causes the nonoscillatory part
of the integrand to become much less smooth, so requiring a higher point number. There
is a balance here between the requirement for less absolute accuracy ast increases and
the effect of larget reducing the smoothness of the nonoscillatory part of the integrand, so
generating less accuracy. Hence, it appears that either version could be used successfully for
the numerical evaluation ofK throughout the required range. The computations were not
pursued beyondM = 128 as the associated overheads of the method become significant,
being primarily caused by the solution of 2M simultaneous equations.
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TABLE 4

Number M of Function Evaluations Required, Exact Value of the Kernel,

and Asymptotic Form for t = 1, S+ = 1

S− M for (34) M for (33) Quadrature value Value by (43)

0.9 64 32 0.8558818751252 0.856112785
0.95 128 64 0.8488396689284 0.84888201
0.99 128 64 0.84297045100255 0.842971673
0.995 64 128 0.84222231359635 0.84222260464
0.999 >128 64 0.84162150547562 0.84162151666

The second asymptotic test involved using formula (43) for the case whenS+ andS− are
close together. For this example,t was taken as unity andS− was ranged from 0.9 to 0.999
with S+ = 1. These results are shown in Table 4.

In Table 4 the numerical method is seen to agree with the asymptotic estimates to greater
and greater accuracy as the value ofS− approachesS+. Because of this proximity, the
numerical integrations can be achieved using Clenshaw–Curtis across the whole set of
parameters in 32 integration points. The test was repeated fort = 10 andt = 100, and as
t increases the accuracy of the asymptotic estimate falls off as the crucial factor to be kept
small ist (S+ − S−).

The third asymptotic formula is (45), and for this test,S+ andt are fixed at 1 and 1000,
respectively, and small values ofS− are used. These comparisons appear in Table 5. The
use of integral (34) in this regime proves increasingly difficult as the nonoscillatory part of
the integrand approaches a root singularity asS− → 0.

3.3. Numerical Conclusions

In the region for whichS+, S−, and t all have modulus less than, say, 20, the direct
application of Clenshaw–Curtis to the full integrand proves accurate and efficient on either of
the four possible integrands. Versions (33) or (34) are preferred as this avoids the evaluation
of Bessel functions. This region may be extended into larget as long ast (S+−S−) remains
small as in Table 4.

As soon as large values oft or S+ occur then either version (34), or (33) with the
singularities suppressed, are required and the irregular integrator of Evans and Webster
becomes the effective tool. If in additionS− is small then the integrand in (34) is closing in
on a singularity and only (33) will be effective. An alternative is to use Clenshaw–Curtis on

TABLE 5

Number M of Function Evaluations Required, Exact Value of the Kernel,

and Asymptotic Form for t = 1000,S+ = 1

S− M for (33) Quadrature value Value by (45)

0.01 64 −2.4124452500934(−4) −2.41229045676(−4)
0.005 64 −1.7289459328368(−4) −1.72879974829(−4)
0.001 64 7.6990137203799(−4) 7.69917085643(−4)
0.0005 128 9.431733851343(−4) 9.43188941036(−4)
0.0001 128 1.002205085(−3) 1.00222058354(−3)
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the range near to zero (say from 0 to 10π/(S+t)) and Evans and Webster to complete the
range toπ/2. This device then combines the sin function and the denominator to remove
the singularity. Using these regions, it is possible to computeK throughout its range.

4. CONCLUSIONS

The results obtained here, which we believe to be novel, provide a general framework
for Fourier transforms of functions of several variables with symmetry. ForN vectors in
three dimensions the rotational average of the exponentialei k i ·xi is given by the kernel
(28). We have concentrated on the specific case of functions of two three-dimensional
vectors, invariant under rigid rotations of the triangle defined by the vectors. Equations
(32)–(36) list a number of forms for the kernel; different forms are appropriate in different
parameter regions. For large values of the parametert , the integrands are highly oscillatory,
although accurate asymptotic expressions exist in the appropriate regions. Similar numerical
techniques might be applicable to the general form of the kernel (28) forN three-dimensional
vectors, although we have not succeeded in reducing this to an integral of elementary
functions. Finally, we note that although we have only reduced the number of integrations
from 3N to 3N − 2, the oscillatory kernel for large wave numberstk falls off asO(t−3/2)

in almost all directions, allowing faster convergence.
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